УДК 636.22/.28.087.7

Сравнительный анализ по применению кормовых пробиотических добавок в рационе коров мясных пород при выращивании ремонтных тёлок в подсосный период

Б.Т. Абилов, к. с.-х. н., Н.А. Болотов, к. с.-х. н., А.И. Зарытовский, к. б. н., А.С. Баграмян, аспирант

Актуальность обосновывается необходимостью интенсификации мясного скотоводства, повышением продуктивности животных, увеличением рентабельности отрасли.

В связи с этим интерес представляет изучение схем рационов, содержащих препараты «Бацелл» и «Моноспорин» для сокращения подсосного периода ремонтного молодняка коров за счёт повышения роста и лучшего развития их организма.

«Бацелл» представляет собой следующий состав: микробная спорообразующих бактерий Bacillus subtilis 945 (B-5225); ацидофильных бактерий Lactobacillus acidophilus L917 (B-4625): Ruminococcus albus 37 (B-4292) с наполнителем шрот подсолнечный, а «Моноспорин» содержит живые микроорганизмы Bacillis питательной среде из мелассы свекловичной, соевого гидролизата и воды.

Сравнительный анализ по применению кормовых пробиотических добавок ДЛЯ определения оптимальных схем кормления использованием пробиотических добавок «Бацелл» в количестве 20,0 г/гол. и «Моноспорин» в количестве 4,0 мл на голову в рационе коров и ремонтного молодняка мясных пород для сокращения их подсосного проводился на базе СПК племзавода периода «Родина» Красногвардейского района Ставропольского края на коровах телятами в возрасте 2-4 отела в соответствии с разработанной схемой (табл. 1).

Таблица 1 - Схема проведения опыта

таолица т Охема проведения опыта			
	Номер	Количество	Особенности кормления
Группы	лактации	животных	
Коровы с те ята и			
I	2-4	15	Основной рацион, рассчитанный
контрольная			по единым нормам ВИЖ (2003 г.).
II опытная	2-4	15	OP + «Бацелл» (20,0 г/гол.)
III опытная	2-4	15	OP + «Моноспорин» (4,0 мл/гол.)
III опытная	2-4	15	OP + «Моноспорин» (4,0 мл/гол.

Согласно расчетам структуры рациона, потребление сухого вещества стельными сухостойными коровами мясного направления продуктивности составляет около 3% от живой массы животного. В наших исследованиях коровы контрольной и опытных групп получали 11,06 кг сухого вещества, или 2,76% от живой массы.

Концентрация обменной энергии в рационе коров исследуемых групп удовлетворяла норме потребности в ней. Так, концентрация обменной энергии в рационе контрольной и опытных групп коров составила 87,44 МДж. Содержание сырого и переваримого протеина в рационе исследуемых групп животных было 13,43 и 833.

Введение пробиотических добавок оказало положительное влияние на динамику роста тёлок (табл. 2).

Таблица 2 - Динамика живой массы тёлок от рождения до отбивки

·	F					
	Группы					
	I контрольная II опытная		III опытная			
Показатели		OP+	OP +			
	OP	«Бацелл»	«Моноспорин»			
		(20,0 г/гол.)	(4,0 мл/гол.)			
Живая масса, кг						
При рождении	23,0±0,82	23,2±1,03	23,4±1,43			
В 2 мес.	79,85±2,4	89,6±2,2*	90,08±2,2*			
В 4 мес.	136,32±1,3	150,22±1,2*	151,66±1,0*			
В 6 мес.	165,6±0,97	175,2±0,86*	171,9±0,52*			
Перед отбивкой	186,5±0,8	197,0±1,04*	194,6±0,92*			
в 205 дней	100,0±0,0	197,0±1,04				
Среднесуточный прирост живой массы, г						
за 60 дней	948	1107	1111			
за 120 дней	а 120 дней 944		1069			
за 180 дней	630	844	825			
за 205 дней 798		848	835			
%	100	106,27	104,65			

Если через сутки после отёла разница по живой массе составляла в среднем 1,74% по тёлкам, то уже через два месяца этот показатель был больше у опытных животных от уровня контрольных из-за увеличения их среднесуточного прироста на 12,2 и 12,8% во второй и третьей опытных группах.

За 205 дней среднесуточный прирост был больше у опытных животных от уровня контрольных на 6,27 и 4,65% во второй и третьей опытных группах соответственно.

Анализ качества молока показал увеличение по таким показателям, как жир, белок, сухой обезжиренный молочный остаток и плотность (табл. 3).

Изменения показателей крови у тёлок подтвердили, что повышение питательности молока способствовало лучшему физиологическому развитию их организма по таким показателям, как общий белок, альбумины, иммуноглобулины и кальций. Эти показатели увеличились в пределах 11 – 18% (табл. 4). Все остальные показатели у животных опытной группы находились в пределах верхних границ физиологической нормы.

Таблица 3 - Качество молока и молочность коров (n=6; P ≤ 0.05)

Поколотоли	Группы			
Показатели	I-контроль	II-опыт	III-опыт	

	OP	OP+ «Бацелл»	OP +
			«Моноспорин»
Жир	3,02±0,35	3,24±0,19	3,49±0,18*
Белок	2,83±0,13	2,96±0,12	2,93±0,08
Сомо	8,45±0,35	8,71±0,5	8,62±0,62
Плотность	29,82±0,45	30,18±0,54	31,1±0,61
Молочность коров в 205 дней	192,45	208,6	205,8

Таблица 4 – Результаты анализа крови контрольной и опытных групп ремонтных телок (n=10; *P≤0,05)

	Pemerria	103101(11 10)	. =0,00/			
Показатели	K - 1	0 - 2	O - 3	Норма		
Лейкоциты, 10 ⁹ /л	5,65±0,4	5,45±0,3	5,50±0,4	4,5-12,0		
Эритроциты, 10 ¹² /л	5,59±1,1	7,49±0,7	7,23±0,5	5,0-7,5		
Гемоглобин, г/л	99,6±3,7	109,8±3,4*	112,2±6,3*	99-129		
Общий белок, г/л	70,8±9,6	82,9±7,9	80,9±8,8	70-85		
Альбумины, г/л	26,14±2,2	31,2±1,8*	30,98±0,7*	18-42,5		
Глобулины, г/л						
α	6,98±2,2	8,98±2,4	6,75±1,4	7,2-17,0		
β	12,04±4,2	13,07±2,7	13,88±1,7	6,0-13,6		
Υ	25,64±1,4	29,66±1,5*	29,32±1,1*	15,0-34,0		
AST, мккат/л	0,44±0,3	0,46±0,2	0,52±0,2	0,62		
ALT,мккат/л	0,38±0,2	0,40±0,1	0,37±0,1	0,42		
Глюкоза, ммоль/л	2.30±0.4	2.97±1.0	2.52±0.8	2,22-3,33		
Холестерин, ммоль/л	4.20±0.7	3.70±0.6	3.3±0.7	1,6-5,0		
Мочевина, ммоль/л	4.44±0.5	3.55±0.7	3.84±0.6	2,8-8,8		
Фосфор, мкг%	6.06±1.14	6.8±2.17	6.42±1.23	4,5-6,0		
Кальций, мг%	9.93±0.45	11.88±0.83*	11.79±0.75*	10-12,5		
Магний, мг%	1.66±0.09	1.72±0.23	1.76±0.14	1,7-2,9		
Микроэлементный состав, мкг%						
Цинк	135,6±6.5	139,2±8,2	141,3±5,5	130-170		
Железо	91,9±10,3	108,9±5,1	109,5±5,6	90-110		
Марганец	3,65±0,8	4,28±0,7	4,32±0,9	2-10		
Медь	76,6±3,2	87,8±7,6	85,6±4,4	75-95		

Поэтому динамика живой массы у телочек от рождения до 205дневного возраста, полученных от коров контрольной и опытной групп, существенно различалась.

Таким образом, кормовые пробиотические добавки в составе рациона в количестве: «Бацелл» - 0,02 кг и «Моноспорин» - 0,004 мл - оказали положительное влияние на увеличение молочности коров герефордской породы и прирост живой массы у ремонтных телок в подсосный период их выращивания. Интенсивность физиологических процессов была подтверждена исследованиями их крови. При этом среднесуточный прирост был выше при использовании препарата «Бацелл».

Литература:

- 1. Абакин, С.С. Микотоксины: диагностика и профилактика /С.С. Абакин //Сборник научных трудов Ставропольского научно-исследовательского института животноводства и кормопроизводства, 2006. -Т. 2. -№ 2-2. -С. 89-97.
- 2. Абакин, С.С. Использование гуминовых кислот для профилактики микотоксикозов телят /С.С. Абакин, А.Н. Мальцев, А.А. Грекова //Сборник научных трудов Ставропольского научно-исследовательского института животноводства и кормопроизводства, 2006. -Т. 1. -№ 5. -С. 66-68.
- 3. Лодыгин, Д.Н. Концентраты с пребиотическими свойствами на основе сыворотки /Д.Н. Лодыгин, И.А. Евдокимов, С.А. Рябцева, Д.Н. Лодыгин, В.Н. Чернобаев //Молочная промышленность, 2006. -№6. -С. 69-70.
- 4. Панова, А.Д. Концентраты «Профилакт-Б» на основе молочной сыворотки /А.Д. Панова, И.А. Евдокимов, С.А. Рябцева, Д.Н. Лодыгин, В.Н. Чернобаев //Молочная промышленность, 2006. -№6. -С. 69-70.
- 5. Силкина, С.Ф. Кровегрупповая характеристика молочного скота красной степной породы Ставропольского края /С.Ф. Силкина, Н.Г. Марутянц, А.В. Скокова, Е.Н. Барнаш //Сборник научных трудов Ставропольского научно-исследовательского института животноводства и кормопроизводства, 2010. -Т. 3. -№ 1. -С. 94-96.
- 6. Чижова, Л.Н. Использование иммуногенетических маркеров в скотоводстве /Л.Н. Чижова, С.Ф. Силкина, Н.Г. Марутянц, Е.Н. Барнаш //Зоотехния, 2011. -№7. -С.3-5.